Part I - Glyphosate Chemistry, Efficacy, and Interaction with Micronutrient Foliar Applications

Recently, a few researchers have suggested a relationship between the use of glyphosate, Roundup Ready® crops, micronutrient deficiencies, and yield reductions. These and other researchers have proposed various theories to explain the reported results. These theories range from reduced micronutrient uptake by Roundup Ready® soybean plants, to the binding of micronutrients by glyphosate inside the plant, as well as many additional themes. With this in mind, a series of questions and science-based answers are presented below to address these claims and also present a basic understanding of how glyphosate interacts with materials in the spray solution.

How Does Hard Water Affect Glyphosate Efficacy?
A chelator is a polydentate compound that can form more or less reversible complexes with polycationic metal ions. Sometimes metal cations, such as Calcium (Ca²⁺), Magnesium (Mg²⁺), and Iron (Fe²⁺/Fe³⁺), are found in what is commonly known as “hard water.” Glyphosate in formulated products is negatively (−) charged when dissolved in water at pH 4.6 and its mild chelating properties allow it to form reversible complexes with the Ca²⁺ and Mg²⁺ in hard water. This can result in a mild <10% reduction in the performance of the herbicidal effects of glyphosate¹⁰ when used at recommended use rates. Water hardness is usually expressed as parts per million (ppm) of CaCO₃ or as grams per U.S. gallon (one grain per gallon = 17.1 ppm). Water with a hardness of 200 ppm or more is considered “hard” and can slightly reduce glyphosate performance. In areas where hard water is used in mixing glyphosate, ammonium sulfate (AMS) is recommended to be used with Roundup® agricultural herbicides. AMS conditions hard water because the sulfate anion can effectively compete with glyphosate for free Ca²⁺ and allow the free glyphosate to enter plant cells for normal herbicide activity.

Are Tank Mixes of Glyphosate with Micronutrient Foliar Sprays a Good Idea?
Foliar sprays of micronutrients are used in crops, e.g., foliar manganese (Mn²⁺) fertilizer in soybeans. Other micronutrients that may be applied in foliar sprays include boron (B), copper (Cu²⁺), molybdenum (Mo⁶⁺), and zinc (Zn²⁺), which are positively (+) charged when dissolved in water. Because many foliar sprays are applied around the time of glyphosate treatments in Roundup Ready® crops, there is interest in tank-mixing glyphosate and micronutrients. As with the cations in hard water, glyphosate may reversibly complex the positively charged micronutrients in the spray solution. When this happens, glyphosate herbicidal performance may be slightly affected because the glyphosate-micronutrient complex may decrease the amount of free glyphosate². Monsanto does not recommend tank-mixing glyphosate herbicides with micronutrients containing polycationic metal ions or foliar fertilizers; instead, if a micronutrient application is needed, Monsanto recommends making two separate applications: one for micronutrient application and another for weed control.

Does Glyphosate Affect the Availability of Micronutrients When Applied Separately?
Research studies in replicated plots evaluating combinations of manganese fertilization and glyphosate herbicide programs have been performed by numerous universities over a period of thirteen years. Several of these trials involve many combinations of glyphosate rates, timings and formulations, as well as different application variables for Mn²⁺. Pennsylvania State University, The Ohio State University, Purdue University, University of Illinois, Virginia Tech, and University of Minnesota, all demonstrated no significant differences in yield responses among the various combinations of treatments when labeled rates of glyphosate were used. In addition to these studies that compared yields, trials done by University of Illinois and Purdue University showed no effect on in-plant Mn²⁺ levels across the various glyphosate treatments (Figure 1). To complement the university research, Monsanto conducted similar field trials and investigations during 2008 and 2009. Three different varieties of Roundup Ready® soybeans were planted and two different herbicide regimes were applied either at V3 alone or at V3 and R1/R2, and two levels of Mn²⁺ were applied at V8 and R4. When compared to the initial levels of Mn²⁺ in the plants, foliar applied Mn²⁺ increased leaf concentrations of Mn²⁺ across all soybean varieties irrespective of glyphosate rates (Figure 2). Glyphosate did not reduce Mn²⁺ in the plants and there were no significant differences in leaf Mn²⁺ concentration resulting from glyphosate treatment regimes for any variety at both Mn²⁺ rate regimes evaluated. When looking at the yield results from the field studies in 2008 and 2009, there were no significant differences in soybean yields due to germlasm, Mn²⁺ rates, or glyphosate applications (Figure 3). Within a Mn²⁺ rate regime, there were no significant differences in seed Mn²⁺ concentration when the unsprayed check treatment was compared to the two glyphosate treatments (data not shown). This two-year study conducted by Monsanto reached the same conclusions as the studies conducted by multiple universities—glyphosate applications in Roundup Ready soybeans do not reduce Mn²⁺ uptake, availability, or utilization in the plant. In addition, these studies corroborate previous research findings that suggest soybean germlasm often responds differently to the availability of mineral elements. It is also important to note that micronutrient levels vary naturally across different soybean varieties as seen in numerous Monsanto and university studies. Consequently, the data demonstrate that soybean varieties respond differently to micronutrient fertilization. Nutrient deficient soils can negatively affect soybean yield potential. Where Roundup Ready® soybeans are grown on nutrient deficient or nutrient limiting soil, Monsanto recommends appropriate fertilization.
Part I - Glyphosate Chemistry, Efficacy, and Interaction with Micronutrient Foliar Applications

Are There Micronutrient Differences in Roundup® Crops Compared to Their non-GMO Isogenic Lines?

Monsanto is required by U.S. and International regulatory agencies to conduct numerous crop compositional analysis studies on Roundup Ready® crops. In these studies a glyphosate-treated Roundup Ready® crop is compared with an untreated isogenic control that does not contain the transgene, but is otherwise genetically similar (Figure 4). There are often multiple commercial varieties in these trials for comparison. Micronutrient analysis is typically included in these studies and no trends in micronutrient differences across these studies have been established when comparing the transgenic variety to the non-transgenic control for any Monsanto biotechnology-derived traits. Figure 5 also demonstrates that the levels of zinc, iron, and manganese have stayed within their expected ranges as the acreage of GMO soybeans have increased in the U.S. from 2000-2009.

So, What Does All This Mean?

Roundup® brand agricultural herbicides have been widely used for weed control in crops for over 30 years and growers’ experiences have been extremely positive, including excellent weed control and increased profits. Speculation that glyphosate could affect micronutrient availability has received attention; but scientific studies have not established any causal relationship. Recent chelation modeling studies showed that glyphosate does not effectively compete with natural plant chelators for the various micronutrients in plants. Consequently, the micronutrient bioavailability within plants treated with glyphosate is within the expected natural range of these metals in plants without glyphosate treatment. Where Roundup Ready® crops are grown on nutrient deficient or limiting soil that can negatively affect yield potential, Monsanto recommends the appropriate fertilization. A thorough review of university research, confirmed by Monsanto trials, demonstrates that the Roundup Ready® soybean system with glyphosate does not negatively impact manganese uptake or accumulation or soybean yield potential. This conclusion is further reinforced by a recent Purdue University publication that concludes: “To date, there is limited scientific research data that suggest that plant diseases have increased in GM crops due to the use of glyphosate. Most importantly, the impact of these interactions on yield has not been demonstrated.” In summary, Monsanto’s recommendations are in accord with the Purdue University report and a recent Iowa State University publication by Dr. Bob Hartzler in which he states, “The best recommendation remains to manage Roundup Ready® soybean similar to conventional varieties in terms of fertility management.”